
Shape and its Subclasses

Shape is a public interface defined by the Java API that defines the methods required by all

inheriting classes. These include contains(), getBounds(), getBounds2D() (a variation of

getBounds()), getPathIterator(), and intersects() . These are the four (five including

getBounds2D()) main methods that must be implemented by every Shape subclass. Each method is

overloaded for different variations of parameters.

- contains() is a method to determine whether the coordinates or rectangular region

defined by the parameters of the method are completely contained within the shape. The Java

API documentation has details regarding how this should be defined to return true.

- getBounds() is a method that should return integer rectangle that completely contains the

shape. getBounds2D() is a variation where instead of integers, the rectangle returned uses

floating point numbers.

- getPathIterator() is a method that returns the PathIterator object which

dictates the outline (i.e. the actual shape) of the Shape object.

- intersects() is a method that must tell whether the interior of the Shape intersects the

interior of the rectangular region specified by the parameters.

See the Java API documentation for more information about how these methods are overloaded, and how

they should be used.

 Here are some of the abstract classes that implement Shape: Arc2D , CubicCurve2D ,

Ellipse2D , Line2D , QuadCurve2D , Rectangle/Rectangle2D , and RoundRectangle2D .

These abstract classes each have .Double and .Float subclasses, which are concrete (fully

implemented) classes that are constructed with doubles or floats, respectively. An example would be:

Ellipse2D circle = new Ellipse2D.Double(x, y, 50, 50);

Where x and y are variables of type double. The diameter of the circle is 50 .

 In order to draw a Shape, one must use a Graphics2D object (if you have worked with graphics

before, this is the “context” with which drawing shall take place). How such an object is created or

obtained is outside of the scope of this summary, but an example of how one is used is not. To draw the

circle we created earlier we would call the draw() method of our Graphics2D object (in this case named

context):

context.draw(circle);

References:

http://download.oracle.com/javase/1.5.0/docs/api/java/awt/Shape.html

http://download.oracle.com/javase/1.5.0/docs/api/java/awt/Graphics2D.html

http://download.oracle.com/javase/1.5.0/docs/api/java/awt/Shape.html
http://download.oracle.com/javase/1.5.0/docs/api/java/awt/Graphics2D.html

